Documents from ACR Site Scanning Instructions Troubleshooting the ACR MRI - Positioning & scan parameters Accreditation Phantom Data Phantom Test Guidance for the ACR MRI Accreditation Program Geoffrey D. Clarke - Analysis of Images - measurements University of Texas Health Science ACR MRI Quality Control Manual Center at San Antonio - Describes the use of MRI image quality data for equipment quality control Artifacts Method of Review Should be recognized for three different situations: · What are the "normal" range of values 1. Artifact is present but not important to the expected? analysis of scanner performance · What "normal" artifacts may effect 2. Artifact is present and is used as a tool for image analysis? analyzing scanner performance 3. Artifact is present and by its presence indicates · What are the most likely sources of a deficiency in scanner performance error? Same type of artifact may have different - Scanning errors role for various sections of phantom - Interpretation errors - Equipment errors

Type I Artifacts

Artifact is present but not important to the analysis of scanner performance

Fourier Truncation Artifact

Fourier Convolution Theorem:

$$\rho_{DFT} = \int_{-L_x/2}^{L_x/2} \overline{\rho}(\tau) h(x-\tau) d\tau = \int_{-\infty}^{\infty} \rho(t) h(x-\tau) d\tau$$

or $\rho_{DFT} = \rho(x) * h(x)$

- The convolution kernel, h(x), is oscillatory and merges closely spaced features together gives rise to spurious ringing
- This effect is most pronounced where the image exhibits a step discontinuity of signal intensity

Excessive Truncation Artifacts Methods for Reducing Truncation (Gibbs) Artifacts If receiver bandwidth is set · Use smoothing filter too low, - Will cause high contrast spatial resolution images to be degraded become susceptible • Use large matrix size to major • Don't have regions with abrupt signal truncation intensity transitions in the phantom artifacts.

RF Noise/Leaks/ Spikes

Single frequency artifact shows up as zipper in middle of image.

Eight Tests

- Geometric Accuracy
- High Contrast Spatial Resolution
- Slice Thickness Accuracy
- Slice Position Accuracy
- Image Intensity Uniformity
- Percent Signal Ghosting
- Low Contrast Detectability

Potential Causes of Geometric Accuracy Failures

- 1. Phantom mispositioning
- 2. Gradient miscalibration
- 3. B_o inhomogeneity
- a. Ferromagnetic objects in magnetb. Poor magnet shimming
- 4. Gradient non-linearity
- 5. Inappropriate receiver bandwidth
- 6. Poor eddy current compensation
- 7. Combination of two or more of above

Slice Thickness Actions

- Slice thickness measured should be $\pm\,0.7$ mm of prescribed value
 - <u>+</u> 14% error on 5mm slice
- Corrective actions:
 - Check Axial Site Series Images
 - Replace cables & connectors, look for other sources of distorted RF pulse shape in RF electronics
 - Try switching RF coils
 - Check gradient calibration

Slice Position Accuracy

- Must Pass on ACR T1-weighted and ACR T2-weighted Series ONLY
- Uses Crossed-Wedges as Reference for Positioning and Slice Spacing Accuracy

Slice Position Accuracy

- Performance criteria:
 - magnitude of bar length difference \leq 5 mm.
 - The actual displacement is ½ of the measured difference.
- Measurement Concerns:
 - Operator may strive for more precision than is necessary

Slice Position Accuracy

- Causes of failure:
 - Operator error
 - Table positioning shift
 - Miscalibrated gradients
 - \bullet High ${\rm B_o}$ inhomogeneities

Image Intensity Uniformity	Percent Signal Ghosting
 Causes of failure: Poor phantom centering in head coil (usually AP) Ghosting Motion or vibration Mechanical failure in head coil 	 Must pass on slice #7 of ACR T1- Weighted Axial Series ONLY Ghost signal is measured and reported as percentage of the signal in the true image Ghosting in other images may be counted as "Unacceptable Artifact"

Ghosting is Nonspecific

- Instability in MRI signal from pulse to pulse
- Phantom motion
- Loose connections or bad cable
- · Partial failure of radio frequency coils
- Pulse sequence calibration error
 - Eddy currents in Fast Spin Echo series

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item> • Causes of failure: • Incorrectly positioned slices • Contrast based on partial volume averaging • Tilted phantom • Incorrect slice thickness • Ghosting • Inadequate SNR

Susceptibility Artifacts

Small inclusions in LCD insert can hamper test

Summary

- Good understanding of ACR phantom image tests depends on familiarity with common MRI artifacts
- Each test evaluates potential failures of different components of the MRI system